Evolution of RNA editing in trypanosome mitochondria.
نویسندگان
چکیده
Two different RNA editing systems have been described in the kinetoplast-mitochondrion of trypanosomatid protists. The first involves the precise insertion and deletion of U residues mostly within the coding regions of maxicircle-encoded mRNAs to produce open reading frames. This editing is mediated by short overlapping complementary guide RNAs encoded in both the maxicircle and the minicircle molecules and involves a series of enzymatic cleavage-ligation steps. The second editing system is a C(34) to U(34) modification in the anticodon of the imported tRNA(Trp), thereby permitting the decoding of the UGA stop codon as tryptophan. U-insertion editing probably originated in an ancestor of the kinetoplastid lineage and appears to have evolved in some cases by the replacement of the original pan-edited cryptogene with a partially edited cDNA. The driving force for the evolutionary fixation of these retroposition events was postulated to be the stochastic loss of entire minicircle sequence classes and their encoded guide RNAs upon segregation of the single kinetoplast DNA network into daughter cells at cell division. A large plasticity in the relative abundance of minicircle sequence classes has been observed during cell culture in the laboratory. Computer simulations provide theoretical evidence for this plasticity if a random distribution and segregation model of minicircles is assumed. The possible evolutionary relationship of the C to U and U-insertion editing systems is discussed.
منابع مشابه
Uridine insertion/deletion RNA editing in trypanosome mitochondria--a review.
The uridine insertion/deletion RNA editing in trypanosome mitochondria is a unique posttranscriptional RNA maturation process that involves the addition or removal of uridine residues at precise sites usually within the coding regions of mitochondrial transcripts. This process creates initiation and termination codons, corrects frameshifts and even builds entire open-reading frames from nonsens...
متن کاملTrypanosome RNA editing: the complexity of getting U in and taking U out.
RNA editing, which adds sequence information to RNAs post-transcriptionally, is a widespread phenomenon throughout eukaryotes. The most complex form of this process is the uridine (U) insertion/deletion editing that occurs in the mitochondria of kinetoplastid protists. RNA editing in these flagellates is specified by trans-acting guide RNAs and entails the insertion of hundreds and deletion of ...
متن کاملUridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business.
The basic mechanism of uridine insertion/deletion RNA editing in mitochondria of kinetoplastid protists has been established for some time but the molecular details remained largely unknown. Recently, there has been significant progress in defining the molecular components of the editing reaction. A number of factors have been isolated from trypanosome mitochondria, some of which have been defi...
متن کاملRNA editing in trypanosome mitochondria: guidelines for models.
Mitochondrial RNAs in trypanosomes are post-transcriptionally altered by uridine insertion and deletion. The information for these RNA editing processes, which are essential for the production of functional messengers, is provided by small guide RNAs. This article discusses how features of partially edited RNAs, gRNAs and chimeric RNAs, in which a gRNA is covalently linked to an editing site of...
متن کاملAddition of uridines to edited RNAs in trypanosome mitochondria occurs independently of transcription.
RNA editing is a novel RNA processing event of unknown mechanism that results in the introduction of nucleotides not encoded in the DNA into specific RNA molecules. We have examined the post-transcriptional addition of nucleotides into the mitochondrial RNA of Trypanosoma brucei. Utilizing an isolated organelle system we have determined that addition of uridines to edited RNAs does not require ...
متن کاملAlternative editing of cytochrome c oxidase III mRNA in trypanosome mitochondria generates protein diversity.
Trypanosomes use RNA editing to produce most functional mitochondrial messenger RNA. Precise insertion and deletion of hundreds of uridines is necessary to make full-length cytochrome c oxidase III (COXIII) mRNA. We show that COXIII mRNA can be alternatively edited by a mechanism using an alternative guide RNA to make a stable mRNA. This alternatively edited mRNA is translated to produce a uniq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 13 شماره
صفحات -
تاریخ انتشار 2000